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Abstract

Betweenness centrality is a graph statistic used to find vertices that are
participants in a large number of shortest paths in a graph. This centrality
measure is commonly used in path and network interdiction problems
and its complete form requires the calculation of all-pairs shortest paths
for each vertex. This leads to a time complexity of O(|V ||E|), which
is impractical for large graphs. Estimation of betweenness centrality has
focused on performing shortest-path calculations on a subset of randomly-
selected vertices. This reduces the complexity of the centrality estimation
to O(|S||E|), |S| < |V |, which can be scaled appropriately based on the
computing resources available. An estimation strategy that uses random
selection of vertices for seed selection is fast and simple to implement,
but may not provide optimal estimation of betweenness centrality when
the number of samples is constrained. Our experimentation has identified
a number of alternate seed-selection strategies that provide lower error
than random selection in common scale-free graphs. These strategies are
discussed and experimental results are presented.
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1 Introduction

One question that often arises in the study of complex networks is that of
identifying the most important vertices or edges in the network. Although the
meaning of “importance” can vary from application to application, the most
important network elements can often be identified through the use of centrality
measures [3, 7]. One commonly used centrality measure is betweenness central-
ity, which counts the percentage of shortest paths in the network which traverse
through any given node. This measure is often a very powerful tool for finding
important nodes (or edges) but it is very expensive to calculate, since it requires
the computation of the shortest paths between every pair of vertices in the net-
work. Due to this, approximation methods for betweenness centrality, many
of which make use of sampling strategies, have been developed over the past
decade. However, it is still unclear what is the best sampling strategy. In this
work, we investigate a variety of strategies and compare them to those found in
existing literature.

The paper is organized as follows. In Section 2 we introduce notation and set
up the problem. Section 3 provides an overview of current methods for sampling
betweenness centrality. The methodology used in our experiments can be found
in Section 4 and our results in Section 5. Other results not directly related to
this specific research are detailed in Section 6. Finally, conclusions and strategies
for future investigation into this problem are in Section 7.

2 Definitions and Notation

Let G = {V,E} be a graph comprised of a set of vertices V and a set of edges
E ⊆ V × V between vertices. The betweenness centrality of a vertex v ∈ V is
defined as

BCv =
∑

u6=w 6=v

σuw(v)

σuw
(1)

where σst(v) is the number of shortest paths between vertices s and t passing
through v, and σst is the total number of shortest paths between s and t in G.

Because a true betweenness centrality calculation must calculate all-pairs
shortest paths for G, it has a worst-case performance of O(|V ||E|) using Dijk-
stra’s algorithm. The practical implication of this superlinear performance is
that completion of the calculation becomes infeasible as the graph grows. As a
result, estimations of betweenness centrality are used when the true betweenness
centrality measures are too expensive.

The standard estimation strategy for betweenness centrality is to reduce the
number of shortest paths calculated by selecting a subset of vertices (the “seed
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set”) S ⊂ V at random, and using the shortest paths from each v ∈ S to all
other vertices in V to estimate the betweenness centrality for all vertices in G.
In all strategies using a seed set, the betweenness centrality for each node is
obtained using only partial information, but with a performance improvement
of O((|V | − |S|)|E|). For large real-world graphs, the seed set is measured in
fractions of a percent of |V | in order to produce an estimation that can be
performed in reasonable time on modern computing hardware.

The (in)accuracy of betweenness centrality estimation strategies may be ex-
pressed by comparing the top k-ranked vertices between the estimation and the
true betweenness centrality.1 A common method of measuring the differences
between the two sets of top k-ranked vertices is to use the Jaccard distance:

dJ(A,B) = 1− |A ∩B|
|A ∪B|

(2)

This equation yields a real number between 0 and 1, where numbers closer
to 0 indicate greater similarity (and therefore greater estimation accuracy), and
numbers closer to 1 indicate greater dissimilarity (and therefore greater estima-
tion error).

3 Related Work

One of the earliest papers discussing the estimation of betweenness centrality is
[4]. This paper introduced the idea of sampling a small number vertices, running
single source shortest path (SSSP) from these vertices, and estimating the be-
tweenness centrality of all vertices in the network from this data. The authors
investigated a number of sampling strategies, including random, maximizing
the minimum distance between samples, maximizing the sum of the distances
between samples, minimizing the sum of the distances between samples, and
variants where a mix of these methods are used. Among these strategies, the
random sampling consistently outperformed others on a variety of generated
and real world networks.

Around the same time, the authors of [2] introduced an adaptive sampling
technique for the approximation of betweenness centrality. They show that,
once enough samples are taken, with high probability the algorithm based on
this adaptive sampling technique achieves a good estimate of the betweenness
centrality of high centrality nodes. Through experiments on a number of gen-

1In most cases, the actual betweenness centrality value is less important than the ordering
of the vertices implied by the value: vertices with higher betweenness centrality values have
a higher betweenness ranking.
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erated and real world networks, they show that this generally holds for low
centrality nodes as well.

In [5], the authors explore the use of graph coarsening for the approximation
of betweenness centrality. They focus on speedup and numerical accuracy of
the approximation on Erdös-Rényi graphs of 1000-2000 vertices.

All of the above papers are concerned with approximating the true values of
the betweenness centrality of nodes in the network with high numerical precision.
However, as was mentioned earlier, often it is not the numerical accuracy but
the relative ranking of nodes in the network that is the main concern when
calculating betweenness centrality. One of the few papers which addresses this
issue is [8]. In this work, the authors introduce algorithms both to estimate
the betweenness of all vertices in the graph with high numerical accuracy and
to identify a superset containing the top k vertices in the network with high
probability. Both algorithms are based on random sampling of shortest paths
in the network. The number of shortest paths needed varies with the desired
accuracies and various graph properties.

In [1], the authors introduce “k-path centrality,” which is defined for node
v as the sum over all possible source nodes s of the probability that a walker
originating from s goes through node v, assuming the walker only moves along
random simple paths of at most length k + 1. They show that a high k-path
centrality is correlated with a high betweenness centrality (as well as being much
faster to calculate) through a series of experiments on synthetic and real-world
networks.

4 Methodology

Our objective was to determine through experimentation whether or not there
exists a seed selection strategy for betweenness centrality estimation that re-
sults in better accuracy (lower error) in identifying the top k nodes than the
commonly-used random seed selection strategy. We compared different strate-
gies by using the Jaccard distance (2) across various numbers s of seeds to
measure (dis)similarity among the top k-ranked vertices: that is, we sought
to measure how well a given strategy identified the set of k vertices with the
highest betweenness centrality.

We concerned ourselves with “real-world” graphs, each of which has scale-
free properties but differs in other metrics, such as order, size, and clustering
coefficient. The five graphs upon which we evaluated each strategy were all
taken from the Stanford Large Network Dataset Collection [6] and are listed in
Table 1.
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graph name vertices edges
as-caida 26 475 53 381

ca-astroph 17 903 197 031
ca-condmat 21 363 91 342
ego-twitter 81 306 1 768 149
email-enron 33 696 180 811

facebook-combined 4 039 88 234
soc-slashdot0902 81 268 582 533

Table 1: List of graphs selected for evaluation

We devised several estimation strategies for our experimental testing:

• random selection : seeds are selected randomly from the set of vertices
in the graph.

• descending degree : seeds are selected in descending order based on their
degree.

• ascending degree : seeds are selected in ascending order based on their
degree.

• preferential selection 1 : randomly select an edge from the graph, and
then pick the lower-degree vertex in that edge. This strategy has the effect
of picking low-degree vertices that are incident to hubs (vertices of high
degree).

• preferential selection 2 : like preferential selection 1, but re-rank the
seeds after selection based on the difference in degree between the seed
and its incident vertex.

• degree-seeded betweenness: estimate betweenness centrality using the
top 100 vertices chosen based on descending degree. Select seeds based on
that descending estimated betweenness centrality.

• descending distance-based sweep: from an initial seed selected at ran-
dom, iteratively select seeds by calculating the distances between the set
of selected seeds each other vertex and selecting as the next seed the vertex
with the largest minimum distance from the existing seed set.

The complexity of each strategy may be calculated in terms of the number
of seeds s, as shown in Table 2.

2c in this case is the number of top-degree vertices we select for the initial betweenness
centrality calculation.
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strategy complexity
random selection O(s)
descending degree O(|V | log |V |)
ascending degree O(|V | log |V |)

preferential selection 1 O(s)
preferential selection 2 O(s+ s log s)

degree-seeded betweenness2 O(c|E|+ |V | log |V |)
descending distance-based sweep O(s|E|+ s)

Table 2: Complexity of evaluated strategies

For each graph, we calculated the normalized “ground truth” betweenness
centrality (yielding, for each vertex, a metric in the range (0, 1] and ranked the
vertices by descending centrality. We then applied each estimation strategy in
turn across a number of seeds s and ranked the vertices by descending estimated
centrality.3

For each set of seeds, we then calculated the Jaccard distance (2) between
the ground truth ranking and the estimation ranking for the top k vertices,
where k ∈ {10, 100, 1000}. By varying s and k, we were able to compare the
changes in accuracy across different seed counts and different top-k ranks.

5 Results

The results of running each strategy for k = 100 and s from 1 to 0.01|V | are
given in Figure 1.

For k = 100, four of the sampling strategies — ascending degree, preferential
selection 1, preferential selection 2, and distance-based sweep — showed little
advantage over random selection across the range of seed sets. In contrast,
two strategies — descending degree and degree-seeded betweenness (shown in
blue in Figures 1 through 3) — provided (sometimes significant) improvements
to estimation accuracy over random seed selection, with minimal increases to
complexity. These results remained largely consistent for k = 10 and k = 1000
as shown in Figures 2 and 3.

These results suggest that vertices with higher degree provide more infor-
mation to the betweenness centralities of other vertices in a graph.

3For data collection, we selected s <= 0.1|V |, but our analysis focused on a much smaller
seed size s <= 0.01|V |, which is more appropriate for the graphs we expect to estimate in real
work.
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6 Other Observations

In general, when s was between approximately 0.0002|V | and approximately
0.02|V |, seed selection using the descending degree or degree-seeded between-
ness strategies yielded results better than random seed selection for estimation of
the top k = 100 highest-centrality vertices. When s was between approximately
0.02|V | and approximately 0.035|V |, random seed selection began to outper-
form both descending degree and degree-seeded betweenness, and remained the
optimal seed selection strategy for larger values of s. (Figure 4 shows examples
of this behavior.)

7 Conclusions and Further Work

We have identified several questions as a result of this experiment that could
serve as the basis for followup efforts:

• Understanding the properties of the graphs that contribute to higher es-
timation error (as seen in the ca-astroph graph as compared with the
as-caida graph) could help improve estimation strategies.

• During the research, we discovered that as the average degree for vertices
increased, the degree-based strategies’ advantage over random seed selec-
tion decreased. This perhaps makes intuitive sense but having a formal
explanation as to why this is the case could be beneficial.

• Finally, future efforts could focus on validating these results on larger
graphs, as well as trying to determine mathematical bounds on the esti-
mations. Additional strategies might be developed. It is expected that
any new successful strategies will be derived from descending degree.
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Figure 1: Estimation error of various strategies for the top k = 100 most central
vertices (as measured by betweenness centrality) as the number of seeds used
in the estimation calculation varies. Degree-seeded betweenness and descending
degree strategies generally yield lower errors in all but the smallest graph.
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Figure 2: Estimation error of various strategies for the top k = 10 most central
vertices (as measured by betweenness centrality) as the number of seeds used
in the estimation calculation varies. Degree-seeded betweenness and descending
degree strategies generally yield lower errors in all but the smallest graph.
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Figure 3: Estimation error of various strategies for the top k = 1000 most central
vertices (as measured by betweenness centrality) as the number of seeds used
in the estimation calculation varies. Degree-seeded betweenness and descending
degree strategies generally yield lower errors in all but the smallest graph.
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Figure 4: Estimation error of various strategies for the top k = 100 most central
vertices (as measured by betweenness centrality) as the number of seeds used in
the estimation calculation varies up to 0.1|V |. Random seed selection performs
better than degree-seeded betweenness and descending degree when the number
of seeds exceeds ≈ 0.035|V |.
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