"Lies, Damned Lies, & Statistics"

Improving the Effectiveness of Indicators of Compromise

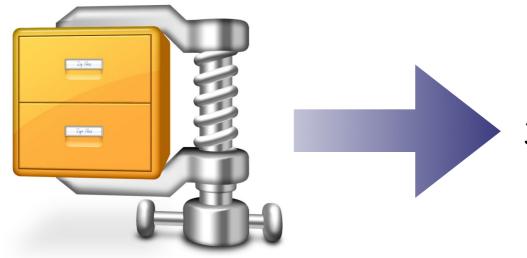
Industrial Control Security Conference 2014

Seth Bromberger Principal, NCI Security LLC seth@ncisecurity.com

About NCI Security LLC

STATISTICS:

The science of producing


unreliable facts from reliable figures.

Traditional Threat Detection

35fb761548845431bc1807fbb868caf7

"Does this hash match any known malware?"

Traditional Threat Detection

- ✓ Low False Positives
- ✓ Fast determination
- ✓ Easily distributed
- ✓ Simple implementation

- × False Negatives wildly variable
- × Relies on up-to-date signatures
- \times All-or-nothing

Characteristics are significant

Advanced Threat Detection

- ✓ Lower False Negatives
- ✓ Fewer updates required
- ✓ Finds the elusive 0-day

- × Higher False Positives
- × Slower determination
- × Not easily distributed
- × Complex implementation
- \times All-or-nothing

Behavior is significant

Heuristic-based Threat Detection

- ✓ Balanced Positives
- ✓ Customizable for organization's risk appetite
- ✓ All the advantages of Advanced Threat Detection

History is significant

- × Requires Advanced Threat Detection
 - < Requires feedback loop

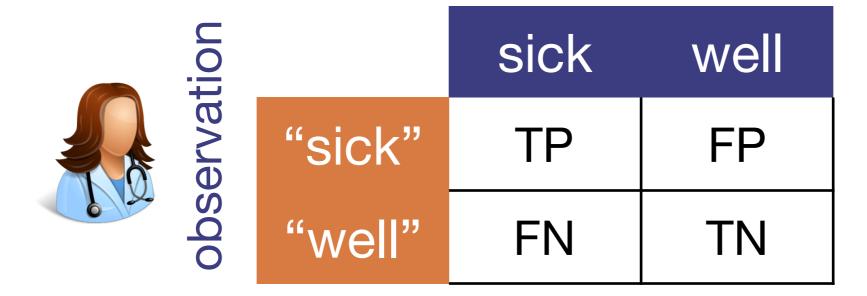
Information

Information

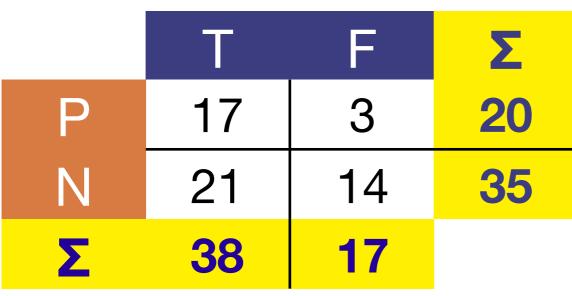
Knowledge

Information

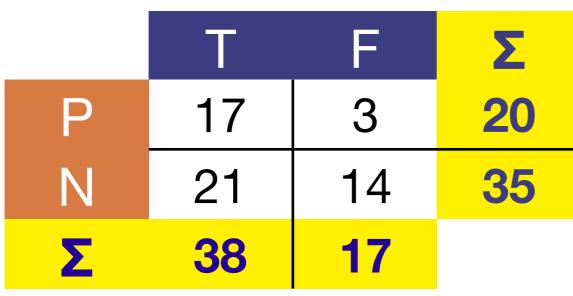
Knowledge


Understanding

STATISTICS


Single Test

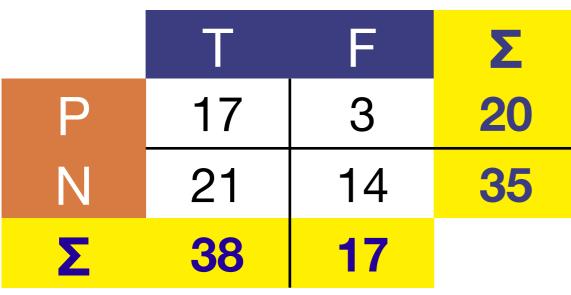
Multiple Tests (n=55)



Positive Predictive Value (PPV): TP / $\Sigma_P = 17$ / 20 = 0.85

- AKA "Precision"
- Measures the probability that a "positive" result is ACTUALLY positive.
- Use when the cost of FP is very high relative to missing TP.
- Disadvantageously influenced by the total number of positives in the population (Σ_P influences significance, which is not ideal when unbalanced).
- The rarer the condition is, the more influence FP has.

Multiple Tests (n=55)



Negative Predictive Value (NPV): TN / $\Sigma_N = 21$ / 35 = 0.60

- Measures the probability that a "negative" result is ACTUALLY negative.
- Use when the cost of a FN is very high.
- Disadvantageously influenced by the total number of negatives in the population (Σ_N influences significance, which is not ideal when unbalanced).

Multiple Tests (n=55)

Accuracy: Σ_T / n = 38 / 55 = 0.69

- Measures the degree to which the test reflects the actual condition.
- High ACC: a given result is likely to be correct.
- Use when it's more important to ensure you've got a balance between FP and FN.
- Does not distinguish between FP and FN: an error is an error.
- This implies that unbalanced data are inappropriate for this sort of statistic.

Real-World Application

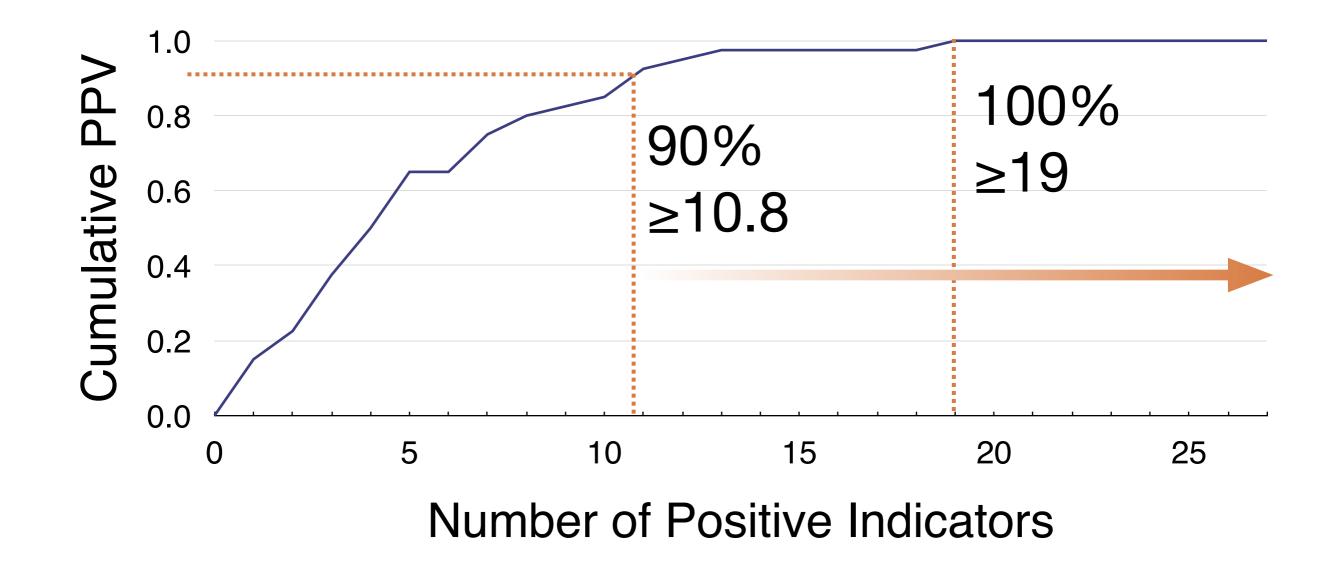
- 334 malware investigations over 16+ months
- 65 indicators of compromise used
 - Investigation if at least one indicator triggered
- 40 instances of malware found
 - We assume accuracy of outcome (forensics = "gold standard")

Raw Data Extract

N	/IALWARE?	Deleted Itself	Spawned New Process	Modified Registries	Started/ Stopped System Service	Injected code into process	Attempted to sleep
	F	F	т	т	F	F	F
	F	F	F	т	F	F	F
	т	F	т	т	Т	F	Т
	F	F	F	т	F	т	F
	т	Т	F	т	Т	т	Т
	F	F	F	Т	F	F	F
	т	F	F	т	F	т	Т
	F	F	F	т	F	F	F

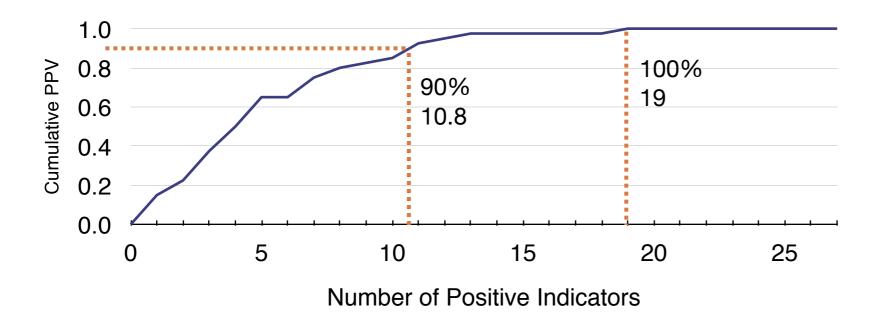
NCI Security LLC Protecting the Nation's Critical Infrastructure

Real-World Data


Multiple Tests (n=334)

	Avg # of Indicators		Min	Max
Ρ	11.18	4.88	2	27
Ν	5.15	3.14	1	17

Malware samples had, on average, 6 more positive indicators than non-malware



Real-World Data

Real-World Data

- 90% probability that event with 11+ indicators is malware
- Malware is (almost) assured when you hit 19 indicators

Indicator Analysis

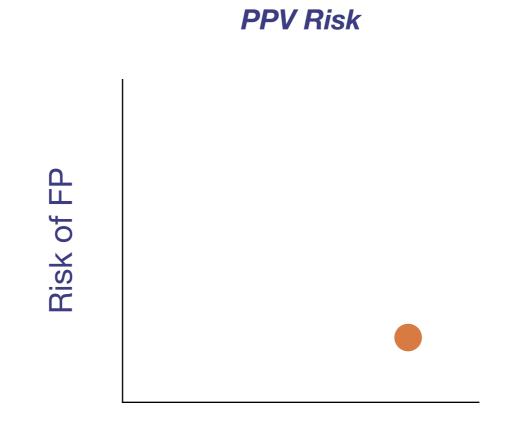
- We haven't looked at the actual indicators yet.
- Are there indicators that are more likely to indicate malware? (Are there correlations?)
- What about **combinations** of indicators?

66

STATISTICS

are no substitute for

JUDGMENT

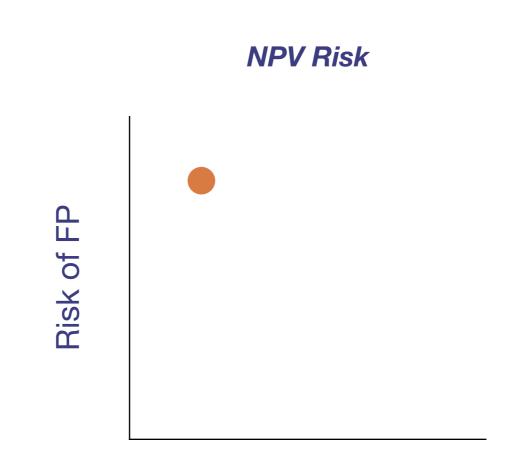


Protecting the Nation's Critical Infrastructure

– Henry Clay

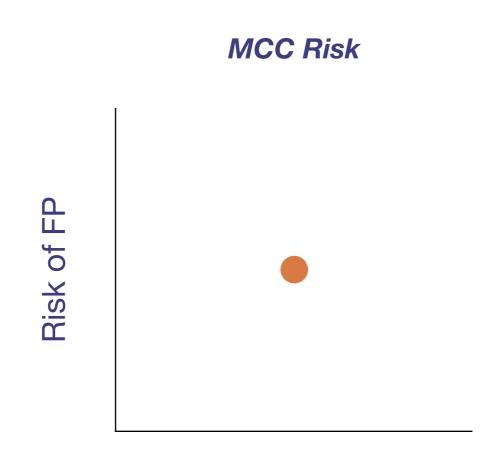
What Statistics Are Important?

 If you have overworked / small teams, PPV is probably ok



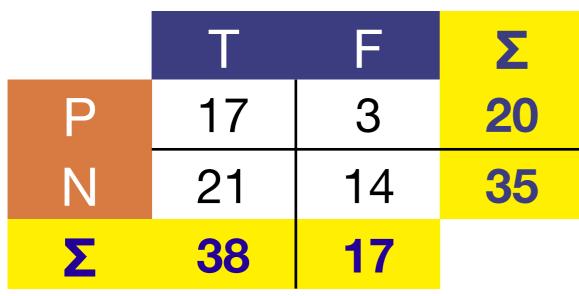
What Statistics Are Important?

Resources to spare? NPV is probably ok.



Risk of FN

What Statistics Are Important?


Unbalanced Data? Look at MCC.

Risk of FN

Multiple Tests (n=55)

$\begin{array}{ll} \mbox{Matthews Correlation Coefficient (MCC):} \\ (TP)(TN) - (FP)(FN) \\ \hline \sqrt{(\Sigma_P)(\Sigma_N)(TP + FN)(TN + FP)} \end{array} = 0.44 \end{array}$

- Does not require balanced data.
- Range is [-1, 1] different from other statistics. 0 is "no better than random correlation", 1 is "perfect correlation", and -1 is "perfect disagreement".

STATISTICS

are like **BIKINIS:**

What they reveal is *suggestive*, but what they conceal is *vital*.

Real-World Results

• Plenty of PPV = 1

- Re-ordered by accuracy to penalize false negatives without impacting efficiency
- Decision to respond automatically resulted in significant time savings
 - ...at the cost of decreased data training / modeling opportunities
- Using combinations of observations yielded better (more specific) results (n < 8)
 - Compute-intensive: $\begin{pmatrix} 65 \\ 8 \end{pmatrix} = \sim 5.04$ billion combinations
- Approach can be used as a basis for first-level incident response

Key Messages

- Statistical analysis is an effective method for improving efficiency of incident response
- Choose a statistical approach based on characteristics of actual data
- Understand limitations and benefits of selected approach. Make informed risk decisions.
- Minimize manual analysis. AUTOMATE!

Thank you! NCI Security LLC Protecting the Nation's Critical Infrastructure info@ncisecurity.com

+1 415 890 2233

